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ABSTRACT 

Animal-vehicle collisions (AVCs) are common around the world and result in 

considerable loss of animal and human life, as well as significant property damage and 

regular insurance claims. Understanding their occurrence in relation to various 

contributing factors and being able to identify high-risk locations are valuable to AVC 

prevention, yielding economic, social, and environmental cost savings. However, many 

challenges exist in the study of AVC datasets. These include seasonality of animal 

activity, unknown exposure (i.e., the number of animal crossings), very low AVC counts 

across most sections of extensive roadway networks, and computational burdens that 

come with discrete response analysis using large datasets. To overcome these challenges, a 

Bayesian hierarchical model is proposed where the exposure is modeled with 

nonparametric Dirichlet process, and the number of segment-level AVCs is assumed to 

follow a Binomial distribution. A Pólya-Gamma augmented Gibbs sampler is derived to 

estimate the proposed model. By using the AVC data of multiple years across about 
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85,000 segments of state-controlled highways in Texas, U.S., it is demonstrated that the 

model is scalable to large datasets, with a preponderance of zeros and clear monthly 

seasonality in counts, while identifying high-risk locations and key explanatory factors 

based on segment-specific factors (such as changes in speed limit) can be done within the 

modelling framework, which provide useful information for policy-making purposes.   

Keywords: Animal-vehicle collisions, count modelling, seasonality, Pólya-Gamma 

augmentation, hierarchical models. 

 

INTRODUCTION 

Animal-vehicle collisions (AVCs) are common around the world and result in 

considerable loss of animal and human life, as well as significant property damage and 

regular insurance claims (Bruinderink and Hazebroek, 2003; Al-Ghamdi and AlGadhi, 

2004; Seiler, 2005; Klöcker, Croft and Ramp, 2006; Mountrakis and Gunson, 2009; 

Sullivan, 2011; Mrtka and Borkovcová, 2013). For such reasons, there is continued 

research in AVC prediction and the effectiveness of various prevention measures (Gunson, 

Mountrakis and Quackenbush, 2011).  

Special attention has been paid to AVCs’ spatial and temporal attributes, due to clustering 

at certain times of year and times of day, with different species’ movements and breeding 

seasons (see, e.g., Wilkins et al. 2019). In the spatial dimension, the focus is on identifying 

the relationship between AVC locations and animal habitats (Hurley, Rapaport and 

Johnson, 2009; Gkritza, Baird and Hans, 2010; Dettki et al., 2011) and nearby landscapes 

(MALO, SUÁREZ and DÍEZ, 2004; Grilo, Bissonette and Santos-Reis, 2009; Danks and 

Porter, 2010; Jensen, Gonser and Joyner, 2014). In the temporal dimension, within-day 

and seasonal activity patterns of both animals and humans vary, affecting vehicle presence 

and animal presence - and their collisions - on roadways (Haikonen and Summala, 2001; 

Rowden, Steinhardt and Sheehan, 2008; Dettki et al., 2011; Diaz-Varela et al., 2011). 

Across the year, migratory patterns, variations in sunrise and sundown, and climatic 

conditions also play a role (Garrett and Conway, 1999; Rodríguez-Morales, Díaz-Varela 

and Marey-Pérez, 2013; Hothorn et al., 2015; Niemi et al., 2017). 

In terms of AVC prevention, the effectiveness of warning signs (Ujvari, Baagoe and 

Madsen, 2007), light-reflecting devices (Brieger et al., 2016), fencing and barriers 

(LEBLOND et al., 2007; Zuberogoitia et al., 2015), overpasses and underpasses 

(McCollister and van Manen, 2010; Rodriguez et al., 2010), modification of nearby 

landscapes (Jaeger et al., 2016), overhead lighting, and other treatments have been 

investigated. Some studies have emphasized the effects of roadway design details on 

AVCs, like speed limit choices (Found and Boyce, 2011; Meisingset et al., 2014), road 

widths (Litvaitis and Tash, 2008), shoulder widths (Lao, Wu, et al., 2011), and the number 

of lanes used (Lao, Zhang, et al., 2011). Most of these studies have done an aggregate 

level (zonal or corridor level) analysis to avoid discrete counts, which allows researchers 

to focus on general trends. 

A handful of recent studies have also explored the factors affecting the severity levels of 

AVCs using discrete choice models (Al-Bdairi, Behnood and Hernandez, 2020; Ahmed, 
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Cohen and Anastasopoulos, 2021), but the results of these models are difficult to apply in 

developing preventive measures because accident-level factors generally dominate 

operational and planning factors in determining the severity of an AVC. Instead, high-risk 

locations are central to assessing AVC clustering on segments in large networks. Two 

approaches are normally adopted to deal with thousands of distinct locations and network 

links. A computationally simple approach used by Kolowski and Nielsen (2008) relies on 

correlation coefficients to define the similarity between road segments with AVC 

occurrences, and judges high-risk locations according to correlation strengths. 

Alternatively, kernel-based smoothing can be applied across all segments at once (Ramp, 

Wilson and Croft, 2006; Snow, Williams and Porter, 2014; Bíl et al., 2016). As noted by 

Snow et al. (2014), such methods normally require a large number of subjective inputs 

(like the spatial weights and kernel band-width used) in the implementation process, and 

can result in unreliable inference. More importantly, the relative importance of each 

attribute for identifying high-risk locations is generally unknown, and scenario evaluations 

based on specific attributes can be unreliable or impossible.  

This study improves upon such methods and demonstrates how high-risk locations can be 

identified using a Bayesian binomial regression model on a large-scale network of around 

eighty-five thousand segments. A Gibbs sampler is derived to estimate the proposed 

model. The model facilitates scenario evaluations based on any segment-specific attribute 

(like speed limit and average daily traffic), which could be valuable in developing AVC 

prevention practices. There are three main challenges in modeling AVC counts. First, 

traditional count data models cannot be directly used because exposure (i.e., the number of 

animal road crossings) is unknown. Second, a high proportion of segments have zero 

AVCs. Third, along with unobserved heterogeneity in the effect of covariates across 

segments, seasonality and spatial correlation are required to be modeled to capture 

heterogeneity in AVC counts. No existing discrete response model can address all these 

challenges simultaneously due to trade-off between computational tractability and 

flexibility, but several studies could handle them individually. The literature related to 

each of these modeling challenges and the adopted approach is discussed below.        

Whereas traffic volume and its proxies are used as the exposure in crash count data 

models, exposure is not required in ordered or multinomial response (i.e., injury severity) 

models. To the best of our knowledge, entirely unknown exposure has not been modeled 

in crash count data models. However, Crépet and Tressou (2011) demonstrate how a 

nonparametric Dirichlet process (DP) mixture can be used to model exposure in food risk 

analysis. DP mixture has also been used in accident analysis, but to model the semi-

parametric heterogeneity in multivariate and multilevel count data models (Heydari et al., 

2016, 2017). We illustrate the first application of the DP mixture to model exposure in 

crash count data models.     

High proportion of zeros in discrete responses are generally handled using zero-inflated 

models (Anastasopoulos, 2016; Fountas and Anastasopoulos, 2018; Liu et al., 2018). 

However, we do not adjust for preponderance of segments with zero crashes because DP 

mixture inherently handles such situations. Specifically, DP mixture creates clusters of 

segments in a data-driven manner and segments in same cluster can share the information 

about the number of animal crossings.  
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Extant literature has emerged in the last decade on modeling unobserved heterogeneity in 

discrete response regression models, such as spatiotemporal correlation in intercept term 

(Liu and Sharma, 2017, 2018), mixture-of-normal-distributed random parameters to 

represent cross-sectional unobserved heterogeneity (Xiong and Mannering, 2013; 

Buddhavarapu, Scott and Prozzi, 2016; Mannering, Shankar and Bhat, 2016; Huang et al., 

2019), and heterogeneity in mean and variance of mixing distributions (Yu et al., 2019; 

Yu, Zheng and Ma, 2020; Fanyu et al., 2021; Li, Song and Fan, 2021; Yan et al., 2021). 

Hou et al. (2021), Krueger et al. (2020), and Mannering et al. (2020) have argued and 

illustrated that accounting for unobserved heterogeneity improves the predictive ability of 

discrete response models. However, Krueger et al. (2020) also show that such gains in 

predictive accuracy are compensated when a linear link function is replaced by a 

nonparametric counterpart in spatial count data models. Considering that the predictive 

ability of the crash count model is crucial and nonparametric link function would make the 

estimation time prohibitable large, accounting for unobserved heterogeneity through 

random parameters in linear link function is in the interest of this study. However, with the 

large-scale dataset at hand, DP mixture would lead to challenges in the mixing and 

convergence of the Gibbs sampler (Hastie, Liverani and Richardson, 2015).  Therefore, 

instead of making link function parameters random, a segment-time-specific random 

intercept is included in the model (see details in Eq. 3 of “The Modeling Framework” 

section). Spatial correlation is ignored because its empirical identification is challenging 

due to a preponderance of zero-AVC segments.   

There is limited literature on modeling time-varying parameters in discrete response 

models, which are essential to capture the temporal variation in covariate effects due to the 

unobserved factors (e.g., environmental conditions). To this end, previous studies adopted 

Markov Switching Models (MSMs) in crash frequency (Malyshkina, Mannering and 

Tarko, 2009; Malyshkina and Mannering, 2010), ordered injury severity (Xiong, Tobias 

and Mannering, 2014), and multinomial choice estimation (Bansal, Hörcher and Graham, 

2020). After the formal introduction of the term “temporal instability” by Mannering 

(2018), most recent analytical studies in accident research check for its presence using 

likelihood ratio test (Behnood and Mannering, 2019; Islam, Alnawmasi and Mannering, 

2020; Islam and Mannering, 2020, 2021; Yu, Ma and Shen, 2021). However, to conduct 

such hypothesis testing, the model is required to be estimated as many times as the 

number of periods. This approach is not feasible to capture temporal instability caused due 

to seasonality across months of the year. MSMs also offer a very restrictive specification 

as they only allow parameters to take as many values as the number of latent states and 

going beyond two latent states increases model complexity. Therefore, in the proposed 

model, we capture seasonality through time-varying parameters. To the best of our 

knowledge, this is the first study that accounts for seasonal effects along with unknown 

exposure in identification of high-risk locations using large-scale data. To check for 

temporal instability in parameters across years, we estimate three separate models for each 

year (2014, 2015, and 2016) while capturing monthly variation in collision probability in 

each year using month-specific parameters. 

In sum, the proposed model incorporates exposure (i.e., segment-specific animal crossing) 

using a nonparametric DP mixture, and the number of segment-level AVCs is assumed to 
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follow a binomial distribution. The probability of AVC occurrence is a logistic function of 

time-varying parameters and segment-specific characteristics. Special attention is paid to 

AVC seasonality and the preponderance of zero-crash segments while avoiding 

computational burdens that often accompany discrete response analysis for such a large 

data set obtained for Texas (roughly 85,000 reasonably homogeneous [in design attributes, 

like curvature, grade, number of lanes, speed limit, and median presence] segments, as 

distinguished in the Texas Department of Transportation’s state-maintained network). A 

Pólya-Gamma augmented Gibbs sampler is derived for computationally tractable 

estimation of the proposed model. 

ANIMAL-VEHICLE COLLISIONS IN TEXAS 

The dataset used here comes from two sources. First, AVC records are from the Crash 

Records Information System (CRIS) maintained by the Texas Department of 

Transportation. Second, segment-specific roadway design factors were obtained from the 

Texas Department of Transportation website. Figures 1 and 2 show the 43,319 AVCs that 

were reported over the 2010-2016 seven-year period. Figure 1 shows a small increase in 

total AVCs in more recent years, perhaps as traffic has risen, with the Texas economy 

bouncing back from a global recession. More interestingly, the months of October through 

December demonstrate much higher counts. This seasonal pattern comes largely from the 

white-tailed deer’s rutting or breeding season (Bruinderink and Hazebroek, 2003; 

Sullivan, 2011; Niemi et al., 2017; TPWD, 2019). 

https://cris.dot.state.tx.us/public/Query/app/public/welcome
https://www.txdot.gov/inside-txdot/division/transportation-planning/roadway-inventory.html
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Figure 1: AVC counts by year (top) and month (bottom), as reported between 2010 and 

2016 (on Texas’ state-maintained highways) 

Figure 2 shows the locations of AVCs associated with the 120,726 segments of state-

maintained roadway network*. It is clear from the figure that a large portion of the AVCs 

is located on the east side of the state around several urbanized areas. After filtering for 

segments shorter than 0.1 mi and segments with posted speed limit below 20 miles per 

hour, a total of 85,953 remained for further analysis. 

AVCs rarely occur on most segments after disaggregating AVCs over all distinctive Texas 

highway segments. Further temporal disaggregation to the level of monthly data shows 

that reported AVC counts are very low along all Texas segments. Just 0.4% of the 

monthly segment-level AVC counts are non-zero. Among the non-zero monthly segment-

level AVCs, only 4.8% have more than one AVC (with a maximum monthly count of 6 

AVCs). Accordingly, two important challenges can emerge for segment level and monthly 

AVC counts: the computation involved increases dramatically due to the number of 

 
* A small percentage of AVC displayed didn’t occur on the network system. The total number of off-system AVCs 

is 5930, which account for 12 percent of the total AVCs recorded. 
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observations (85,953 segments × 12 months = 1,031,436), counts are very sparse 

(typically zero) and highly variable. 

 
Figure 2: Texas’ state-maintained roadway network with reported AVCs (from 2010 

through 2016) shown as black dots 

Figure 3 shows AVCs recorded on segments in a small section of Texas. In this figure, the 

AVCs are denoted as circles (one for each occurrence), whereas segments are shown as 

solid black lines with their endpoints indicated by crossbars. As evident in Figure 3, most 

segments have zero AVCs recorded, suggesting that spatial autocorrelation will show as 

near-zero at this highly disaggregated level although AVC clustering is evident at regional 

and state levels.  
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Figure 3: Reported AVCs from 2010 through 2016 in a small area in Texas 

Moreover, Figure 3’s zero-count segments may indicate heterogeneity across segments. It 

is possible that many segments located in Figure 3’s bottom left (or its top left) are 

elevated bypasses or have lots of fencing or special underpasses to avoid animals crossing 

at grade. For this reason, the effect of a specific design factor may only impact AVC 

counts on the selected subgroup of segments in a large network. In this case, the need to 

identify the heterogeneity among a large number of segments further complicates the 

computation. 

In summary, the data analysis reveals several important aspects influencing AVC 

modelling and inference. These include AVC seasonality, the sparse and highly variable 

nature of AVC count data at the monthly and segment levels, and potential for observed 

and unobserved heterogeneity among segments. The next section discusses how all these 

aspects are incorporated in the proposed count data model to find high AVC locations.  

THE MODELING FRAMEWORK 

To account for several important aspects of AVC modelling in a Bayesian hierarchical 

framework, the model specification begins with the use of a binomial distribution for the 

number of AVCs recorded at each segment 𝑠 in month 𝑡, so that the probability of having 

k reported AVCs for a segment-time pair (𝑠, 𝑡) is 

𝑃(𝑘𝑠,𝑡 | 𝑛𝑠,𝑡, 𝑝𝑠,𝑡) =  (
𝑛𝑠,𝑡

𝑘𝑠,𝑡
) 𝑝𝑠,𝑡

𝑘𝑠,𝑡(1 − 𝑝𝑠,𝑡)
𝑛𝑠,𝑡−𝑘𝑠,𝑡

, (1) 

where 𝑛𝑠,𝑡 is the number of animal road crossings depending on animal habitats and 

seasonality, and 𝑝𝑠,𝑡 is the probability of an AVC occurrence, both of which vary by 

location (𝑠) and month (𝑡).  Using the binomial distribution with two parameters 𝑛𝑠,𝑡 

and 𝑝𝑠,𝑡, the number of AVCs, 𝑘𝑠,𝑡, can be interpreted as the result of repeated 𝑛𝑠,𝑡 

Bernoulli trials. Each trial represents an animal road crossing with probability of 𝑝𝑠,𝑡 

causing an AVC. For this reason, the collision probability, 𝑝𝑠,𝑡 can be regarded as a 

quantity that is determined by segment-specific characteristics (like land-use and segment-

design factors), and time-varying natural factors (like rainfall) and is assumed to have a 

logistic functional form: 
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𝑝𝑠,𝑡 =
1

1 + exp(−𝜓𝑠,𝑡)
 ,   (2) 

where 𝜓𝑠,𝑡 determines the probability of causing an AVC when an animal road crossing is 

made at segment 𝑠 and month t and can be represented as a linear function of 

characteristics, namely segment-specific design factors like land use, and time-varying 

natural factors, such as rainfall (see Equation 3). In addition, there may be heterogeneity in 

collision probability due to the omission of important segment-specific factors. In order to 

accommodate this possibility, a two-component clustering is incorporated for the 

intercept: 

𝜓𝑠,𝑡 = 𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝒔 + 𝜸𝒕
′𝒚𝒔,𝒕 ,  (3) 

where 𝒙𝑠 is a column vector containing the time-invariant design factors of segment 𝑠, 𝜷 

is the corresponding conformable parameter vector, 𝒚𝒔,𝒕 is a column vector containing 

time-varying parameters, and 𝜸𝒕 is the corresponding conformable month-specific 

parameter vector.† More importantly, 𝐼𝑠,𝑡 is an indicator for the non-zero constant 

effect 𝛼0,𝑡 at segment 𝑠 and month t. In other words, the constant effect of each segment-

time pair arising from this specification is either zero or 𝛼0,𝑡. Nonzero 𝛼0,𝑡 suggests that 

some network segments have their collision probabilities affected by some important but 

unknown factors. 

While finding appropriate specification of 𝑛𝑠,𝑡, it is worth noting that the total number of 

animal crossings for each segment differs across segments and depends on the seasonality 

of average animal activity levels as seen in Figure 1. To achieve this flexibility, while 

simultaneously reflecting very low AVC counts on most segments, a nonparametric 

Dirichlet process (DP) prior is used for the number of animal road crossing at all segments 

(𝑠) and at all months (𝑡) of a year:  𝑛𝑠,𝑡. In summary, the proposed modelling framework 

for AVCs is presented below: 

𝑃 ∼ 𝐃𝐏(𝜗𝑃0), 

(𝜇𝑠,𝑡  , 𝜎𝑠,𝑡) ∼ 𝑃, 

𝑛𝑠,𝑡
∗ ∼ 𝐍𝐨𝐫𝐦𝐚𝐥(−0.5,∞) (𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 ), 

𝑛𝑠,𝑡 = ⌊𝑛𝑠,𝑡
∗  ⌉, 

𝑞𝑡 ∼ 𝐁𝐞𝐭𝐚(𝑎0, 𝑏0), 
𝐼𝑠,𝑡 ∼ 𝐁𝐞𝐫𝐧𝐨𝐮𝐥𝐥𝐢(𝑞𝑡), 

𝛼0,𝑡, 𝜷, 𝜸𝒕 ∼ 𝐌𝐕𝐍(𝟎, 𝜮𝟎,𝒕), 

𝑝𝑠,𝑡 = 1/(1 + 𝑒𝑥𝑝(−𝜓𝑠,𝑡) ), 

𝜓𝑠,𝑡 = 𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝒔 + 𝜸𝒕
′𝒚𝒔,𝒕, 

(4) 

 

𝑘𝑠,𝑡 ∼ 𝐁𝐢𝐧𝐨𝐦𝐢𝐚𝐥(𝑛𝑠,𝑡 , 𝑝𝑠,𝑡). 

The number of animal road crossings, 𝑛𝑠,𝑡 and the collision probability, 𝑝𝑠,𝑡, on segment 𝑠 

in month 𝑡 are obtained from the left and the right blocks of Equation 4, respectively. The 

number of observed AVCs on segment 𝑠 in month 𝑡, 𝑘𝑠,𝑡 , is a realization of the binomial 

distribution with the parameters 𝑛𝑠,𝑡 and 𝑝𝑠,𝑡, as shown in the last part of Equation 4. 

More specifically, in the top-left block of the equations, a discrete distribution 𝑃 is drawn 

 
† Time-varying parameters on time-invariant attributes can be easily incorporated in the proposed model, but are not 

specified here to avoid explosion of the parameter space. We could afford time-varying coefficients on time-varying 

attributes since there is just one attribute (rainfall) with monthly variation in this data set.    
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from DP with scalar precision parameter 𝜗 and base distribution 𝑃0. Then the cluster 

locations 𝜇𝑠,𝑡 and scales 𝜎𝑠,𝑡 are generated from the discrete distribution 𝑃 for each 

segment 𝑠 and month 𝑡. Conditional on the cluster locations and scales, a real-valued 

latent quantity 𝑛𝑠,𝑡
∗  is drawn. Then, the total number of animal crossings, 𝑛𝑠,𝑡, at site 𝑠 and 

month 𝑡 is set equal to the nearest integer, ⌊𝑛𝑠,𝑡
∗ ⌉. The truncated normal distribution on 𝑛𝑠,𝑡

∗  

ensures the non-negativity of 𝑛𝑠,𝑡.  

For the collision probability, 𝑝𝑠,𝑡, specification in the top-right block of Equation 4, the 

indicator probability, 𝑞𝑡, is first drawn from a Beta distribution with prior parameters 𝑎0 

and 𝑏0 for each month 𝑡. Then the indicator variable, 𝐼𝑠,𝑡, for all segments and months is 

generated from a Bernoulli distribution using this indicator probability, 𝑞𝑡. The non-zero 

constant effect, the effect of segment-specific design factors, and time-varying natural 

factors, [𝛼0,𝑡, 𝜷′, 𝜸𝒕′] are drawn from an uninformative multivariate normal (MVN) 

distribution with prior mean zero (𝟎) and diagonal covariance, 𝜮0,𝑡. Then 𝜓𝑠,𝑡 is 

determined by the dot product of attributes [𝐼𝑠,𝑡, 𝒙𝒔
′ , 𝒚𝒔,𝒕′] and parameters [𝛼0,𝑡, 𝜷′, 𝜸𝒕′], 

which is further transformed to the collision probability, 𝑝𝑠,𝑡, after passing through a 

logistic function. 

The proposed hierarchical model was estimated using a Markov Chain Monte Carlo 

simulation. Algorithm 1 shows the step-by-step sampling from the conditional posterior 

distributions. Key features to note are the Pólya-Gamma data augmentation step to address 

the non-conjugacy of the logistic probability function (Polson et al., (2013) and the use of 

a stick-breaking construction to obtain the DP prior (Canale and Dunson, (2011). The 

complete derivation of the Gibbs sampler is provided in the Appendix. 
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Initialize parameters – clusters {1, ⋯ , 𝐶}, latent variables, and hyper-parameters 

Step 1: Draw 𝒏𝒔,𝒕 using a Metropolis-Hastings (MH) step 

→ Step 1a: Assign cluster ID to each segment-month (𝑠, 𝑡) pair. 

→ Step 1b: Update segment-specific parameters for each time period (𝜇𝑠,𝑡 ,  𝜎𝑠,𝑡
2 ) from multinomial 

distribution using cluster parameters 𝜇𝑙
∗, 𝜎𝑙

∗2 as 

𝑝(𝜇𝑠,𝑡 = 𝜇𝑐
∗ 𝑎𝑛𝑑 𝜎𝑠,𝑡

2 = 𝜎𝑐
∗2| ⋅) =

𝑤𝑐𝑝(𝑛𝑠,𝑡|𝜇𝑐
∗ ,𝜎𝑐

∗2)

∑ 𝑤𝑙𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗,𝜎𝑙

∗2)𝐶
𝑙=1

 , 

                   where 𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗, 𝜎𝑙

∗) =
Φ(𝑛𝑠,𝑡+1/2|𝜇𝑙

∗,𝜎𝑙
∗2)−Φ(𝑛𝑠,𝑡−1/2|𝜇𝑙

∗,𝜎𝑙
∗2)

1−Φ(−1/2|𝜇𝑙
∗,𝜎𝑙

∗2)
, and Φ(. ) is a normal cumulative 

distribution function.  

→ Step 1c: Update cluster weights 𝑤𝑙  using a stick-breaking construction with Beta-distributed  𝑉𝑙  

where 𝑉𝑙|. ∼ 𝐁𝐞𝐭𝐚(1 + 𝑛𝑙 , 𝜗 + ∑ 𝑛𝑖
𝐶
𝑖=𝑙+1 ),  𝑤1 = 𝑉1 , 𝑤𝑙 = 𝑉𝑙 ∏ (1 − 𝑉𝑖)𝑖<𝑙  for 𝑙 = 2, … , 𝐶, 

and 𝑛𝑙  is the number of 𝜇𝑠,𝑡 that is equal to 𝜇𝑙
∗. (See Appendix for more details on 𝑉𝑙)  

→ Step 1d: Set 𝑛𝑠,𝑡
∗ = Φ−1(𝑢𝑠,𝑡  | 𝜇𝑠,𝑡 ,  𝜎𝑠,𝑡

2 ) , 

where 𝑢𝑠,𝑡  ~ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦 (Φ (𝑛𝑠,𝑡 −
1

2
|𝜇𝑠,𝑡 , 𝜎𝑠,𝑡

2 ) , Φ (𝑛𝑠,𝑡 +
1

2
|𝜇𝑠,𝑡 , 𝜎𝑠,𝑡

2 )) 

→ Step 1e: Update cluster (𝜇𝑙
∗, 𝜎𝑙

∗2) from the Normal-Gamma distribution as  

 (𝜎𝑙
∗)−2|. ∼ 𝐆𝐚𝐦𝐦𝐚 (𝑎0 +

𝑛𝑙

2
, 𝑏0 +

1

2
∑ ((𝑛𝑠,𝑡

∗ − 𝜂) +
𝑛𝑙

1+𝑛𝑙
η2){(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙

∗} ), and 

 𝜇𝑙
∗|. ∼ 𝐼

[−
1

2
,∞)

𝐍𝐨𝐫𝐦𝐚𝐥 (
∑ 𝑛𝑠,𝑡

∗
{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙

∗}

1+𝑛𝑙
,

𝜎𝑙
∗2

1+𝑛𝑙
). 

→ Step 1f: Metropolis-Hastings step with 

                   P(𝑛𝑠,𝑡|. ) ∝  [∑ 𝑤𝑙

Φ(𝑛𝑠,𝑡 +
1

2
|𝜇𝑙

∗, 𝜎𝑙
∗2

)−Φ(𝑛𝑠,𝑡 −
1

2
|𝜇𝑙

∗, 𝜎𝑙
∗2

)

1−Φ(−
1

2
|𝜇𝑙

∗, 𝜎𝑙
∗2

)

𝐶
𝑙=1 ] × 𝐁𝐢𝐧𝐨𝐦𝐢𝐚𝐥(𝑘𝑠,𝑡| 𝑛𝑠,𝑡 ,  𝑝𝑠,𝑡). 

Step 2: Draw 𝒑𝒔,𝒕  

→ Step 2a: Draw auxiliary variable  𝜔𝑠,𝑡|.  ~ 𝐏ó𝐥𝐲𝐚𝐆𝐚𝐦𝐦𝐚(𝑛𝑠,𝑡 ,   𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝒔 + 𝜸𝒕
′ 𝒚𝒔,𝒕). 

→ Step 2b: Draw 𝜷|.  ~ 𝐌𝐕𝐍(𝒎𝜷 , 𝑽𝜷), 

                   where,  𝑽𝛽 = (∑ ∑ (𝜔𝑠,𝑡𝒙𝒔𝒙𝒔
′ )𝑠𝑡 + 𝑩0

−1)
−1

 and 

    𝒎𝛽 = 𝑽𝛽(∑ ∑ 𝒙𝒔(𝜅𝑠,𝑡 −  𝜔𝑠,𝑡𝜸𝒕
′𝒚𝒔,𝒕 −  𝜔𝑠,𝑡𝛼0,𝑡𝐼𝑠,𝑡)𝑠𝑡 ). 

→ Step 2c: Draw 𝛼0,𝑡 ,  𝜸𝒕|. ~ 𝐌𝐕𝐍(𝒎𝒕. 𝑽𝒕),  

                   where, 𝑽𝑡 = (∑ (𝜔𝑠,𝑡𝒛𝒔,𝒕𝒛𝒔,𝒕
′ )𝑠 + 𝑫0

−1)
−1

 and 𝒎𝑡 = 𝑽𝑡(∑ 𝒛𝒔𝒕(𝜅𝑠,𝑡 − 𝜔𝑠,𝑡𝜷′𝒙𝒔)𝑠 ). 

→ Step 2d: Draw 𝐼𝑠,𝑡 with 

𝑃(𝐼𝑠,𝑡 = 1| ⋅) =
𝑃𝑠,𝑡

1 𝑞𝑡

𝑃𝑠,𝑡
0 (1−𝑞𝑡)+𝑃𝑠,𝑡

1 𝑞𝑡
 ,where  

𝑃𝑠
0 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 )  | 𝜓𝑠,𝑡 =  𝜷′𝒙𝑠 + 𝜸′
𝒕𝒚𝒔,𝒕 and  

𝑃𝑠
1 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 )  | 𝜓𝑠,𝑡 =  𝛼0,t𝐼𝑠,𝑡 + 𝜷′𝒙𝑠 + 𝜸𝒕
′ 𝒚𝒔,𝒕 .  

→ Step 2e: Draw 𝑞𝑡|. ~ 𝐁𝐞𝐭𝐚(1 + ∑ 𝐼𝑠,𝑡𝑠 ,  1 + ∑ (1 − 𝐼𝑠,𝑡)𝑠 ). 

Algorithm 1: Blocked Gibbs Sampler for Detecting Animal-Vehicle Crossings and Collisions 
(Note: All draws are for each segment, 𝑠, and month, t, as applicable.) 
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RESULTS 

The model described above was estimated using the Texas AVC dataset of the year 2016. 

Table 1 provides a summary of the segment-level design and environmental features that 

were used as explanatory variables.  

Table 1: Summary statistics for segment-specific factors considered in the model 

Variable Name Min. Mean Max. 

Segment Length (miles) 0.1 0.93 30.17 

Average Daily Traffic, ADT  

(1000 vehicles per day) 
.01 10.3 341.3 

Median Width (ft) 0 7.05 710 

Inside Shoulder Width (ft) 0 5.10 60 

Outside Shoulder Width (ft) 0 6.35 53 

Surface Width (ft) 10 32.4 236 

% K Factor (for traffic peaking) 4.2 10.8 19.9 

Controlled Access? 0 0.09 1 

Posted Speed Limit (miles per hour) 20 57.4 85 

Urban Area? 0 0.26 1 

Barrier Median Present? 0 0.05 1 

Terrain Composition      

  Water (%) 0 4.5 98.4 

  Trees (%) 0 10.8 96.3 

  Open Land (%) 0 52.8 100 

Population Density (100 persons/ square mile) 0 0.91 58.4 

 

Algorithm 1 was used to draw 20,000 MCMC samples from the conditional posterior 

distributions of the model parameters, of which first 10,000 burn-in samples were 

discarded. The estimation took about 22 hours on a high-performance computer with six 

Intel Xeon cores operating at 3.4 GHz and having 128 GB of RAM. MCMC chains 

converged with an average Gelman & Rubin R-hat diagnostic of 1.011. We estimate the 

model for years 2014, 2015, and 2016 to test the temporal stability of parameters across 

years. We also estimate a fully specified zero-inflated negative binomial (ZINB) model. 

This means that both the binary logit specification and the count model specification of 

ZNIB utilize all explanatory variables that we use in identifying the collision probability 

of the proposed model. Its root mean square error is compared with the proposed model in 

Table 2. The results indicate that the proposed model with a non-parametric method to 

model the exposure performs better than the traditional zero-inflated negative binomial 

model. 

Table 2: Root mean square error (RMSE) comparison 

 2014 2015 2016 

Zero-inflated negative binomial 0.077 0.083 0.088 

Proposed model 0.027 0.029 0.030 

 

Figure 4 shows the posterior expected AVCs compared against observed AVCs by month 
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for the year 2016. The relative magnitude of the aggregated quantities resembles the 

seasonal pattern in the observed data. Such resemblance illustrates good predictive 

performance of the proposed model.3 

 
Figure 4: Posterior Expected Versus Observed Number of Animal-Vehicle Collisions by Month. 

Table 3 shows the posterior mean estimates and 95% credible intervals for homogeneous 

probability parameter (𝜷) for years 2014, 2015, and 2016. We observe that 95% credible 

intervals of all parameters across three years have substantial overlap. Thus, we cannot 

reject null hypotheses at 5% significance level that the parameter estimates across years 

are the same. To substantiate our claims, we have used the posterior standard deviation 

(analogous to standard errors), and posterior mean of parameter estimates from each of the 

three years and conducted pairwise t-tests. The results of t-tests are aligned with our visual 

inspection of credible intervals as p-values for all comparisons are way above 0.05 (in 

fact, most p-values are above 0.50).  

To avoid redundancy, we only discuss results for the year 2016, but detailed results for 

2014 and 2015 are also available upon request. The estimated effects for several design 

factors are also insightful. Namely, speed limit is positively associated with higher 

probability of causing an AVC by an animal road crossing. Segments in urban areas tend 

to have lower probabilities of observing an AVC by animal-road crossings. A median 

barrier tends to decrease the probability of an AVC, perhaps because animals are unable to 

see the other side of the segment and may not cross at such locations. Large median 

widths correspond to a higher likelihood of an AVC, which can correspond to a correlated 

 
3 Figure 4’s absolute magnitudes are generally smaller than those shown in Figure 1 since Figure 44 estimates the 

sums over all segments for a given year, whereas Figure 1 aggregates AVCs across segments and over seven years. 
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increase in roadbed width. Outside shoulder widths also show a similar trend, but the 

effect of shoulder width on AVC probability is not statistically significant. Busy segments 

or those with a continuous peak traffic flow have a lower likelihood of AVCs, and an 

increase in average daily traffic corresponds to an increase in AVCs when controlling for 

several opposing trends (like peak factor and urban areas, for example). Controlled access 

highways like freeways have a significantly lower likelihood of an AVC, as expected. 

Land use characteristics also have a significant effect on AVC probability. Segments 

located near open areas, adjacent to water bodies, or surrounded by trees are more likely to 

observe an AVC compared to segments near buildings. The association of population 

density with the likelihood of an AVC is not statistically significant.  



 

Table 3: Posterior summary of the homogeneous probability parameters (𝜷) 

Variables 

2014 2015 2016 2014 vs 2015 2014 vs 2016 2015 vs 2016 

Posterior 

mean 

95% 

credible 

intervals 

Posterior 

mean 

95% 

credible 

intervals 

Posterior 

mean 

95% 

credible 

intervals 

p-value from paired t-tests of posterior means 

Segment Length (mi) 0.479** 
(0.426, 

0.533) 
0.468** 

(0.418, 

0.517) 
0.464** 

(0.417, 

0.512) 
0.75 0.67 0.91 

Average Daily Traffic  

(1000 vehicles per day)  
0.003 

(-0.011, 

0.017) 
0.003 

(-0.01, 

0.015) 
0.006 

(-0.006, 

0.019) 
0.97 0.76 0.72 

Median Width (ft) 0.009** 
(0.005, 

0.014) 
0.009** 

(0.005, 

0.013) 
0.007** 

(0.004, 

0.012) 
0.99 0.66 0.65 

Inside Shoulder Width 

(ft) 
0.004 

(-0.016, 

0.024) 
0.00007 

(-0.018, 

0.019) 
-0.010 

(-0.028, 

0.007) 
0.79 0.32 0.44 

Outside Shoulder Width 

(ft) 
0.062** 

(0.042, 

0.082) 
0.066** 

(0.047, 

0.084) 
0.074** 

(0.056, 

0.092) 
0.79 0.37 0.51 

Surface Width (ft) 0.022** 
(0.017, 

0.028) 
0.020** 

(0.015, 

0.025) 
0.018** 

(0.013, 

0.022) 
0.51 0.25 0.6 

Peak Period (%) -0.080** 
(-0.107, 

-0.056) 
-0.070** 

(-0.092, 

-0.048) 
-0.075** 

(-0.096, -

0.054) 
0.56 0.77 0.74 

Controlled Access? -1.411** 
(-1.769, 

-1.089) 
-1.356** 

(-1.643, 

-1.066) 
-1.317** 

(-1.604, -

1.031) 
0.81 0.68 0.85 

Posted Speed Limit 

(mph) 
0.026** 

(0.02, 

0.034) 
0.023** 

(0.017, 

0.029) 
0.025** 

(0.019, 

0.031) 
0.45 0.77 0.6 

Urban Area? -0.487** 
(-0.652, 

-0.329) 
-0.493** 

(-0.64, -

0.345) 
-0.551** 

(-0.692, -

0.411) 
0.96 0.56 0.58 

Barrier Median Present? -0.592** 
(-0.892, 

-0.276) 
-0.403** 

(-0.679, 

-0.12) 
-0.391** 

(-0.652, -

0.123) 
0.38 0.34 0.95 

Terrain Composition            

  % Water 0.008** 
(0.002, 

0.014) 
0.011** 

(0.006, 

0.017) 
0.012** 

(0.006, 

0.017) 
0.73 0.46 0.68 

  % Trees 0.020** 
(0.015, 

0.024) 
0.018** 

(0.014, 

0.023) 
0.017** 

(0.013, 

0.021) 
0.87 0.67 0.78 

  % Open Land 0.008** 
(0.005, 

0.012) 
0.009** 

(0.005, 

0.012) 
0.009** 

(0.006, 

0.012) 
0.86 0.73 0.86 

Population Density (100 

persons/ square mile) 
0.021 

(-0.021, 

0.065) 
0.026 

(-0.014, 

0.067) 
0.031 

(-0.006, 

0.069) 
0.75 0.67 0.91 

**95% posterior credible interval does not contain zero, i.e., the covariate’s effect is statistically different than zero at a 0.05 significance level.  
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Table 4 shows the estimates and statistics associated with parameters (𝛼0,𝑡, 𝐼𝑠,𝑡 and 𝜸𝒕), 

which form the time-varying component of the collision probability link function. Three 

main insights are drawn from these estimates. First, around 53% of the segments have 

non-zero 𝐼𝑠,𝑡, i.e., they carry an inherent non-zero constant effect (unexplained by the 

observed covariates) on the AVC probability. The posterior means of this non-zero 

constant effect (𝛼0,𝑡) is negative for most months, except from October to December. 

Second, Table 4 also shows that around 1.04% to 2.11% of segments have non-zero 

animal crossings (𝑛𝑠,𝑡) in each month, which is consistent with small proportion of 

segments with non-zero AVCs in the data. This result implies the DP process could 

properly cluster segments with no exposure. Third, rainfall effect on collision probability 

(𝜸𝒕) is generally positive and is statistically significant in January-April and September-

November at a significance level of 0.1 or lower.   

Table 4: Time-Varying Quantities and Parameter Estimates for year 2016 

Month 

Percent of 

Non-Zero 

𝑛𝑠,𝑡 

Percent of 

Non-Zero 

𝐼𝑠,𝑡 

Posterior mean 

of constant 

effect (𝛼0,𝑡)  

Posterior mean of 

Rainfall (inches) 

effect (𝜸𝒕) 

January 1.19% 53% -0.28** 0.12* 

February 1.08% 53% -0.44** 0.12* 

March 1.14% 52% -0.36** 0.14* 

April 1.13% 53% -0.37** 0.24** 

May 1.17% 53% -0.37** 0.12 

June 1.13% 52% -0.39** 0.03 

July 1.10% 53% -0.42** -0.02 

August 1.04% 52% -0.53** 0.05 

September 1.16% 53% -0.32** 0.27** 

October 1.79% 54% 0.31** 0.32** 

November 2.11% 54% 0.46** 0.14** 

December 1.54% 53% 0.1 0.03 

*90% posterior credible interval does not contain zero, i.e., the covariate’s effect is statistically different 

than zero at a 0.1 significance level. **95% posterior credible interval does not contain zero, i.e., the 

covariate’s effect is statistically different than zero at a 0.05 significance level.  

 

Using the posterior draws from conditional distribution of probability parameters, the 

probability of observing an AVC from an animal road crossing on each segment can be 

evaluated. Figure 5 shows the probability distribution for January and October to observe 

the difference in crash probabilities by month. The variation in collision probability for 

both months across segments can be attributed to the differences in road design factors. 

The likelihood of observing a crash is markedly higher in October than in January, further 

confirming the proposed model could capture seasonality.  
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Figure 5: Empirical Posterior Distribution of Collision Probability, 𝑝𝑠,𝑡 for January and October 

The spatial distribution of posterior collision probabilities (𝑝𝑠,𝑡) in November is shown in 

Figure 6 across the Texas highway network. Figure 6 shows several clusters of light-

colored segments, which correspond to the network around major urban areas. In contrast, 

darker segments are typically major highways that span the entire state. This pattern is a 

manifestation of the positive effect of speed limit, among others. This segment-level 

spatial distribution is useful for appreciating AVC contributions of road design decisions.  

The number of animal road crossings on any segment is also key in determining expected 

AVCs. Segments with high crash probability but having zero or very few animal road 

crossings are relatively less of a concern as compared to segments having a high crash 

probability and many animal crossings. The segments of the latter type can be regarded as 

high-risk locations, meriting AVC prevention considerations. Identifying such high-risk 

locations can guide investments and intervention decisions. For the same purpose, the 

posterior means of the expected AVCs (𝑛𝑠,𝑡 × 𝑝𝑠,𝑡) are shown in Figure 7 for two different 

months of a year. By using the number of crossing (𝑛𝑠,𝑡) in the calculation for the 

expected AVCs, Figure 7 shows the prominent effect of seasonality. More specifically, the 

expected AVC values are higher (darker colored) for more segments in October than that 

in January. This result shows that the model could capture seasonality as the model-

identified high-risk locations vary across months or seasons. Another apparent feature 

evident in Figure 7 is that segments with higher expected AVCs are only a small share of 

all segments and scattered across the Texas network. This small share is because over 98% 

of 𝑛𝑠,𝑡 values are zero in any month (as noted in Table 4). 
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Figure 6: Posterior Mean of Collision Probability 𝑝𝑠,𝑡 for All Segments in the Texas Roadway 

Network for November 

Since segments with a high number of expected AVCs are scattered across the network, a 

smooth change in expected AVCs from one segment to other nearby segments may be 

preferred, through spatial autocorrelation. However, in doing so the advantage of having 

segments with zero animal crossings play no role in the parameter estimation is lost, 

causing parameter estimates to be biased low from averaging effects over nearby 

segments. Moreover, this contradicts the goal of inferring segment-specific design factor 

effects and shifts the focus onto higher levels of spatial aggregation. 
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(a) January 

 

(b) October 

Figure 7: Posterior Expected AVCs for All Segments in the State-Controlled Texas Roadway 

Network 
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Given the segment-level focus of this analysis, another interesting aspect that is easy to 

identify from this model is the effect of a change in any of the design factors on collision 

probability. To compute the marginal effect of a variable, the posterior means of collision 

probabilities are recalculated for each segment by changing that variable with a specific 

amount for all segments. Among various design factors, speed limit reductions are 

relatively easier to implement than infrastructure-related measures to lower AVCs. Figure 

8 shows the histograms of changes in collision probability (i.e., marginal effects) resulting 

from the decrease in speed limit. There is a stark difference in the effect of speed limits 

across months, and the effect almost linearly increases with the increase in the magnitude 

of the speed limit change. Thus, marginal effect plots are valuable in highlighting the 

countermeasures’ seasonal effectiveness and benefits of implementing them at higher 

intensity. To further illustrate this point, we also calculate the marginal effect of ADT in 

Figure 9, showing seasonality effect and diminishing reduction in collision probability 

with the increase in ADT magnitude. Similar marginal effect plots can be generated for 

other variables.       

Figure 10 shows the spatial nature of the decrease in collision probability due to a 

decrease in posted speed limit by 10 miles per hour, where marginally larger reductions 

are observed in urban areas. Conditional on the availability of data on the segment-level 

fencing, warning signs, overpasses/underpasses, light-reflecting devices, and overhead 

lighting, spatiotemporal effects of these countermeasures can be computed, which could 

further assist the State of Texas in saving human and animal lives while avoiding injuries 

and property loss.  



 

 

Figure 8: Marginal effect histograms of the speed limit for January and October (the decrease in speed limit is indicated at the bottom 

of the subplot and median of the distribution is indicated by the solid vertical lines).   



 

 

Figure 9: Marginal effect histograms of the average daily traffic (ADT) for January and October months (the increase in average daily 

traffic is indicated at the bottom of the subplots and median of the distribution is indicated by the solid vertical lines).   
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Figure 10: Posterior Change in Collision Probability following a 10 mph Speed Limit Reduction 

on Texas Highways 

CONCLUSIONS 

This study develops and demonstrates a new method for analysis of low count values 

across many points in time and space, using a large network of roadway segments. The 

model is validated using Texas’ animal-vehicle collision (AVC) dataset. The proposed 

model uses binomial distribution to specify the AVC counts and allows the number of 

animal crossings to be governed by a Dirichlet process (DP). The collision probability is 

represented using a logistic function that depends upon segment-specific factors, monthly 

rainfall, and segment-month random effects. DP enables the modelling of segments with 

zero AVCs because it creates clusters of segments nonparametrically that can share 

information. Time-varying probability specification helps in capturing seasonal effects. To 

address the non-conjugacy of posterior updates of the parameters associated with the 

logistic probability function, Pólya-Gamma data augmentation is adopted.  

Several advantages of the proposed modeling framework become clear in the case study. 

First, this new specification enables the identification of high-risk locations over time 

points (for example, months or seasons), not just space. Second, the impacts of various 

segment-specific attributes are inferred directly across all locations. The proposed 

modeling framework thus allows policymakers to dive deep into factors that impact 

AVCs. The impact of purposeful modifications in any segment-specific factor (like speed 

limit or lane width) on AVC counts can be estimated in a relatively straightforward 

fashion.  
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In summary, AVCs are challenging to predict due to the interactions of complex 

vegetative, climatic, traffic, and human factors. The inclusion of more variables like driver 

sight distances, availability of underground tunnels for animal crossings, and clear zone 

dimensions alongside highways may be helpful. Extending the model to include the time-

of-day variability can also help improve estimates since a large proportion of AVCs 

occurs at night§. Moreover, accounting for unobserved heterogeneity in the effect of 

covariates on crash probability is also likely to improve prediction accuracy. However, 

increased model complexity will require advanced techniques to speed up model 

estimation and convergence, such as the use of Variational Bayes (Bansal, Krueger and 

Graham, 2021). Finally, the loglikelihood ratio test (Mannering, 2018; Pang et al., 2022) 

to check the temporal stability in parameters does not apply to the Bayesian non-

parametric models as the number of parameters is growing with observations, and 

therefore, developing a new statistical test to check temporal stability in such models is 

also an important avenue for research.   

  

 
§ FHWA study (https://www.fhwa.dot.gov/publications/research/safety/humanfac/94156.cfm)  

suggests a large proportion of AVCs occur early in the day between 4 and 6 am and at night 

between 6 and 11 pm. 

https://www.fhwa.dot.gov/publications/research/safety/humanfac/94156.cfm
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APPENDIX: DERIVATION OF THE GIBBS SAMPLER 

The sampling from conditional posterior distributions in the MCMC estimation of the 

proposed hierarchical model can be divided into two blocks. Whereas the first block 

contains the sampling of the number of animal road crossings, 𝑛𝑠,𝑡, the second block 

includes the sampling of collision probability, 𝑝𝑠,𝑡, and related parameters for all segment-

month pairs.  

In the first block, a stick-breaking construction is considered for the Dirichlet process that 

enables the estimation of the probability of each cluster containing segments. These 

probabilities help estimate cluster parameters, and eventually the continuous 𝑛𝑠,𝑡
∗  that is 

then truncated and discretized to obtain segment-month-level animal road crossing count 

𝑛𝑠,𝑡. Conditional posterior distributions of all parameters in block 1 are in closed-form, 

except the final step for which the Metropolis-Hastings algorithm is used. In the second 

block, since the binomial distribution with logistic probability function does not have a 

conjugate prior, Pólya-Gamma data augmentation is adopted to transform the model 

likelihood to the Gaussian likelihood (Polson et al., (2013). For the notational simplicity, 

𝑃(𝐴| ⋅) is used to denote the probability of 𝐴 conditioning on the rest of the parameters 

and data.  

A.1 Posterior sampling of 𝑛𝑠,𝑡 and the related parameters 

Conditioning on the starting value of exposure, 𝑛𝑠,𝑡, a blocked Gibbs sampler for the 

Dirichlet process is used to sample 𝑛𝑠,𝑡 (Ishwaran and James, 2001a).5 Here, the kernel 

function used for representing clusters is a truncated normal density function with the 

truncation made at -0.5 from below to ensure the non-negativity of resulting 𝑛𝑠,𝑡. For 

simplicity in cluster-specific distribution, the precision parameter 𝜗 is set to one, with the 

following base distribution: 

𝑃0(𝜇, 𝜎2) = 𝐍𝐨𝐫𝐦𝐚𝐥(𝜇|𝜇0, 𝜎2)𝐆𝐚𝐦𝐦𝐚(1/𝜎2 |𝑑0, 𝑒0),   (5) 

The prior parameters are chosen to be weakly informative (µ0  =  0,  𝑑0  =  2 and 𝑒0  =
 10). Due to the discrete nature and the limited number of distinct values of 𝑛𝑠,𝑡, the 

maximum number of distinct clusters (𝐶) is set to 3.6 For a thorough review of the stick-

breaking construction, readers can refer to Ishwaran and James (2001b). Using the above 

prior specification, the Gibbs sampler proceeds via the following sampling steps: 

• For each 𝑠 = 1, … , 𝑆 and 𝑡 = 1, … , 𝑇, update 𝜇𝑠,𝑡and 𝜎𝑠,𝑡
2  by sampling from a 

multinomial distribution with 

𝑝(𝜇𝑠,𝑡 = 𝜇𝑐
∗ 𝑎𝑛𝑑 𝜎𝑠,𝑡

2 = 𝜎𝑐
∗2| ⋅) =

𝑤𝑐𝑝(𝑛𝑠,𝑡|𝜇𝑐
∗, 𝜎𝑐

∗2
)

∑ 𝑤𝑙𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗, 𝜎𝑙

∗2
)𝐶

𝑙=1

, 

 

 (6) 

where 𝑤𝑙 is the weight and 𝜇𝑙
∗ and 𝜎𝑙

∗ are parameters for cluster 𝑙. The kernel function 

for each cluster is as follows: 

 
5 See Shirazi et al. (2016) for an application in safety research. 
6 We tried to estimate the model with the higher number of clusters, but convergence issues are encountered due to a 

limited range of 𝑛𝑠,𝑡.  
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𝑝(𝑛𝑠,𝑡|𝜇𝑙
∗, 𝜎𝑙

∗2) =
Φ(𝑛𝑠,𝑡 + 1/2|𝜇𝑙

∗, 𝜎𝑙
∗2) − Φ(𝑛𝑠,𝑡 − 1/2|𝜇𝑙

∗, 𝜎𝑙
∗2)

1 − Φ(−1/2|𝜇𝑙
∗, 𝜎𝑙

∗2)
,  

  

 (7) 

where Φ(.) is a normal cumulative distribution function 

• A stick-breaking construction of Dirichlet process is used to compute the probabilities 

or weights for each cluster. Assuming 𝑉𝑙 for each cluster 𝑙 is independent 𝐁𝐞𝐭𝐚(1, 𝜗), 

the weights are 𝑤1 = 𝑉1 and 𝑤𝑙 = 𝑉𝑙 ∏ (1 − 𝑉𝑖)𝑖<𝑙  for 𝑙 = 2, … , 𝐶. By setting 𝑉𝐶 to 1, 

the weights across all clusters are guaranteed to sum to 1. The posterior of 𝑉𝑙 accounts 

for the number of segment-time pairs that belong to cluster 𝑙. It can be sampled from:  

𝑉𝑙 ∼ 𝐁𝐞𝐭𝐚 (1 + 𝑛𝑙 , 𝜗 + ∑ 𝑛𝑖

𝐶

𝑖=𝑙+1

) , for 𝑙 = 1, … 𝐶 − 1,    (8) 

where 𝑛𝑙 is the number of 𝜇𝑠,𝑡 that is equal to 𝜇𝑙
∗. 

• For each 𝑠 = 1, … , 𝑆 and 𝑡 = 1, … , 𝑇, draw 𝑛𝑠,𝑡
∗  by first sampling from the following: 

𝑢𝑠𝑡 ∼ 𝐔𝐧𝐢𝐟𝐨𝐫𝐦 (Φ (𝑛𝑠,𝑡 −
1
2 |𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 ) , Φ (𝑛𝑠,𝑡 +
1
2 |𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 )),    (9) 

and then set 𝑛𝑠,𝑡
∗ = Φ−1(𝑢𝑠,𝑡|𝜇𝑠,𝑡, 𝜎𝑠,𝑡

2 ). 

• Update the cluster-specific parameters using their conditional distributions for 𝑙 =
1, … 𝐶: 

1/𝜎𝑙
∗2 ∼ 𝐆𝐚𝐦𝐦𝐚 (𝑎0 +

𝑛𝑙

2
, 𝑏0 +

1

2
∑ ((𝑛𝑠,𝑡

∗ − 𝜂) +
𝑛𝑙

1 + 𝑛𝑙
η2)

{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙
∗}

),  (10) 

 

𝜇𝑙
∗ ∼ 𝐼

[−
1
2

,∞)
𝐍𝐨𝐫𝐦𝐚𝐥 (

∑ 𝑛𝑠,𝑡
∗

{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙
∗}

1 + 𝑛𝑙
,

𝜎𝑙
∗2

1 + 𝑛𝑙
),   (11) 

where 𝜂 =  ∑
𝑛𝑠,𝑡

∗

𝑛𝑙
{(𝑠,𝑡):𝜇𝑠,𝑡=𝜇𝑙

∗} . 

• The above steps include update of all parameters associated with the distribution of 

𝑛𝑠,𝑡. Conditional on these parameters and the parameters related to collision 

probability 𝑝𝑠,𝑡, the conditional marginal probability of 𝑛𝑠,𝑡 is as follows: 

𝑃(𝑛𝑠,𝑡| ⋅) ∝ [ ∑ 𝑤𝑙

Φ (𝑛𝑠,𝑡 +
1
2

|𝜇𝑙
∗, 𝜎𝑙

∗2) − Φ (𝑛𝑠,𝑡 −
1
2

|𝜇𝑙
∗, 𝜎𝑙

∗2)

1 − Φ (−
1
2

|𝜇𝑙
∗, 𝜎𝑙

∗2)𝑙=1,…,𝐶

]  𝐁𝐢𝐧𝐨𝐦𝐢𝐚𝐥(𝑘𝑠,𝑡|𝑛𝑠,𝑡 , 𝑝𝑠,𝑡) (12) 

Utilizing the above expression, a Metropolis-Hastings algorithm is used to sample 𝑛𝑠,𝑡 for 

all segment-month pairs. 

A.2 Posterior sampling of 𝑝𝑠,𝑡 and the related parameters 

The posterior sampling for the parameters related to collision probability, 𝑝𝑠,𝑡, can be 

divided into two parts: The first part is concerned with the parameters for defining 𝑝𝑠,𝑡, 
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which are the regression parameters 𝛼0,𝑡, 𝜷 and 𝜸𝒕, and the second part is related to the 

parameters associated with indicators, 𝐼𝑠,𝑡. 

Conditional on both 𝑛𝑠,𝑡 and 𝐼𝑠,𝑡, marginal posterior distributions of 𝛼0,𝑡, 𝜷 and 𝜸𝒕 are not 

of well-known form. To address this non-conjugacy challenge, a Pólya-Gamma-

distributed auxiliary variable, 𝜔𝑠,𝑡, is introduced for each segment-month pair (Polson et 

al., (2013).7 After conditioning on 𝜔𝑠,𝑡 and other parameters, the resulting marginal 

posterior distributions of 𝛼0,𝑡, 𝜷 and 𝜸𝒕 become Gaussian. The detailed sampling steps are 

as follows: 

• Conditional posterior distribution of 𝜔𝑠,𝑡 is: 

𝜔𝑠,𝑡|. ∼  𝐏ó𝐥𝐲𝐚𝐆𝐚𝐦𝐦𝐚(𝑛𝑠,𝑡, 𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝑠 + 𝜸𝒕
′𝒚𝒔,𝒕), (13) 

• It is worth nothing that posterior updates for time-invariant, 𝜷, and time-varying 

parameters, [𝛼0,𝑡, 𝜸𝒕], differ substantially, and therefore, we update them separately as 

detailed below:  

a. We follow Polson et al. ((2013) to obtain the posterior update for time-invariant 

parameters, 𝜷, which turns out to be Gaussian:  

𝜷 ∼ 𝐌𝐕𝐍(𝒎𝛽 , 𝑽𝛽), (14) 

where, 

𝑽𝛽 = (∑ ∑(𝜔𝑠,𝑡𝒙𝒔𝒙𝒔
′ )

𝑠𝑡

+ 𝑩0
−1)

−1

,  

𝒎𝛽 = 𝑽𝛽 (∑ ∑ 𝒙𝒔(𝜅𝑠,𝑡 −  𝜔𝑠,𝑡𝜸𝒕
′𝒚𝒔,𝒕 −  𝜔𝑠,𝑡𝛼0,𝑡𝐼𝑠,𝑡)

𝑠𝑡

),  

(15) 

𝜅𝑠,𝑡 = 𝑘𝑠,𝑡 −
𝑛𝑠,𝑡

2
 and 𝑩0 is the prior uninformative covariance matrix (subset of 

𝜮𝟎,𝒕, a diagonal matrix with large values) for 𝜷.  

b. Similarly, time-varying parameters, [𝛼0,𝑡, 𝜸𝒕
′], are drawn from: 

 [𝛼0,𝑡, 𝜸𝒕
′]~ 𝐌𝐕𝐍 (𝒎𝒕, 𝑽𝒕) (16) 

where, 

𝑽𝑡 = (∑(𝜔𝑠,𝑡𝒛𝒔,𝒕𝒛𝒔,𝒕
′ )

𝑠

+ 𝑫0
−1)

−1

,  

𝒎𝑡 = 𝑽𝑡 (∑ 𝒛𝒔𝒕(𝜅𝑠,𝑡 − 𝜔𝑠,𝑡𝜷′𝒙𝒔)

𝑠

), 

 (17) 

where 𝒛𝒔𝒕 = [𝐼𝑠,𝑡 , 𝒚𝒔,𝒕
′ ]′ and 𝐷0 is the prior uninformative covariance 

matrix (subset of 𝜮𝟎,𝒕, a diagonal matrix with large values) for 
 

 
7 See Buddhavarapu et al. (2016) and Buddhavarapu et al. (2021) for applications in safety research. 
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[𝛼0,𝑡, 𝜸𝒕] . 

For all segment-month pairs, the indicator 𝐼𝑠,𝑡 is drawn from its conditional 

posterior distribution: 

𝑃(𝐼𝑠,𝑡 = 1| ⋅) =
𝑃𝑠,𝑡

1 𝑞𝑡

𝑃𝑠,𝑡
0 (1 − 𝑞𝑡) + 𝑃𝑠,𝑡

1 𝑞𝑡

 , (18) 

where 

𝑃𝑠,𝑡
0 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 ) | 𝜓𝑠,𝑡 =  𝜷′𝒙𝑠 + 𝜸′
𝒕
𝒚𝒔,𝒕 

𝑃𝑠
1 = exp (𝜅s,t𝜓𝑠,𝑡 −

1

2
𝜔𝑠,𝑡𝜓𝑠,𝑡

2 ) | 𝜓𝑠,𝑡 =  𝛼0,𝑡𝐼𝑠,𝑡 + 𝜷′𝒙𝑠 + 𝜸′
𝒕
𝒚𝒔,𝒕 

(19) 

Lastly, assuming prior distribution for 𝑞𝑡 to be 𝐁𝐞𝐭𝐚(1,1), its conditional posterior 

distribution is: 

𝑞𝑡~ 𝐁𝐞𝐭𝐚 (1 + ∑ 𝐼𝑠,𝑡

𝑆

𝑠=1

, 1 + ∑(1 − 𝐼𝑠,𝑡)

𝑆

𝑠=1

).  (20) 


